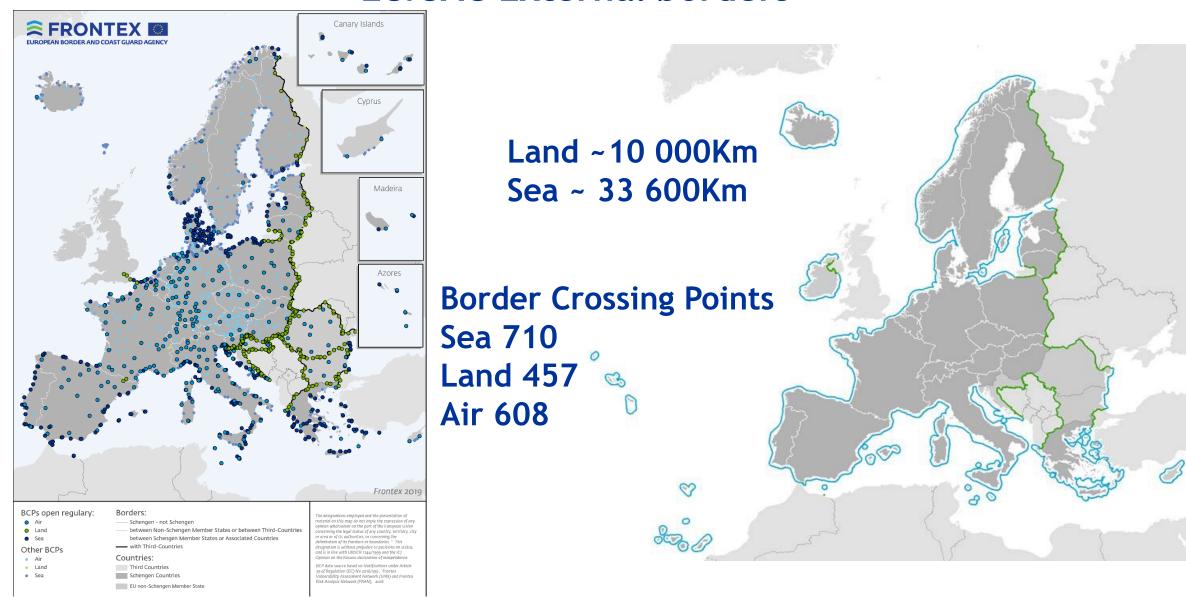


EUROPEAN BORDER AND COAST GUARD AGENCY

The power of informed decisions

Eurosur Fusion Services

Information Fusion Centre - Situational Awareness and Monitoring Division


Catarina Clemente Senior GIS Analyst

EUROPEAN BORDER AND COAST GUARD AGENCY

Together with the Member States, we ensure safe and well-functioning external borders providing security

EU/SAC External borders

rights

and EU cooperation

EUROPEAN BORDER AND COAST GUARD AGENCY

Geographic data required

Eurosur Fusion Services
Information Fusion Centre - Situational Awareness and Monitoring Division

Katalin Bódis GIS Analyst

Data requirement and level of generalization depend on purposes

Main tasks where our customs data visualized and analysed

- 1. Various measurements and statistical evaluations based on the length and types of borders;
- 2. General mapping, visualization in small scale: continents, group of countries, regions;
- 3. Large scale mapping data for monitoring the external land borders:
- 4. Border section classification.

1. Various measurements and statistical evaluations based on the length and types of country borders

Data required:

Detailed border geometry:

- preferably containing every single geodetic basepoint as a vertex in the line.
- 1.1 An explanation: the Coastline paradox.
- Classic theoretical example: Koch snowflake.

Classic <u>practical</u> example: Coastline of Great Britain.

Length if measured by using

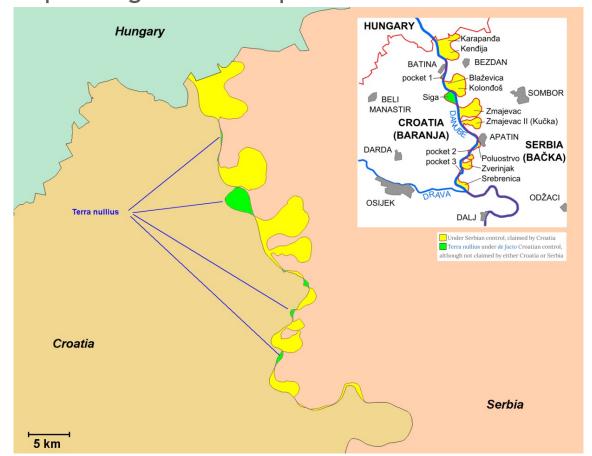
- a) 100 km long units: ~ 2,800 km.
- b) 50 km long units: ~ 3,400 km.

Difference:

approximately 600 km (~ 20 %) longer.

2. General mapping, visualization in small scale: continents, group of countries, regions

Data required:


Administrative boundaries: generalized but always expressing the actual political situation.

E.g.: Territorial disputes should be described.

EU: Croatia and Serbia: the border is defined differently by the neighbouring countries.

Yellow areas are claimed by Croatia.

Serbia: Danube is the border.

2. General mapping, visualization in small scale: continents, group of countries, regions

Additional data required:

Transport infrastructure: main roads, railways, airports, harbours etc.

Hydrography: main water courses and water bodies

Settlements: administrative status, population

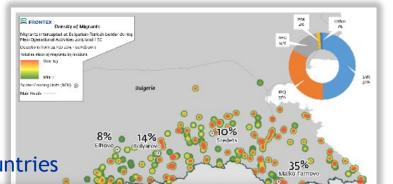
Specific thematic details that are spatially in harmony with the main map components:

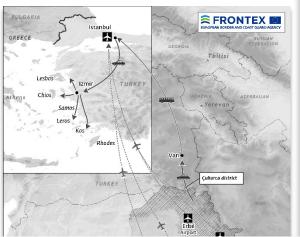
- border crossing points
- industrial facilities

Proper toponyms: attribute should contain also the standardized geographical names.

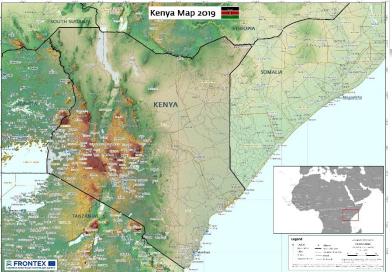
2. General mapping, visualization in small scale: continents, group of countries, regions

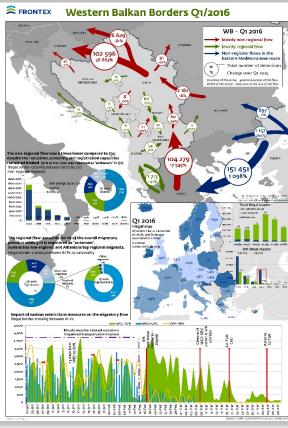
Reports; Presentations; Briefings; Operational support


Management


Support of Frontex

EU Member States

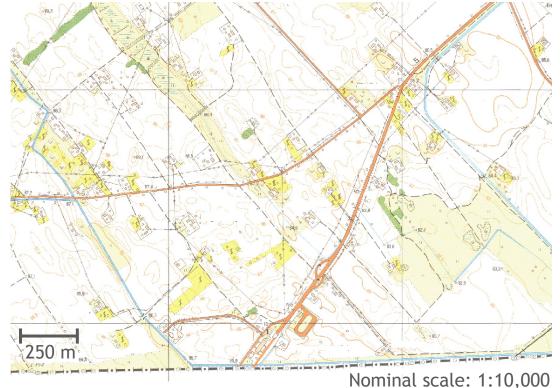

Other Agencies

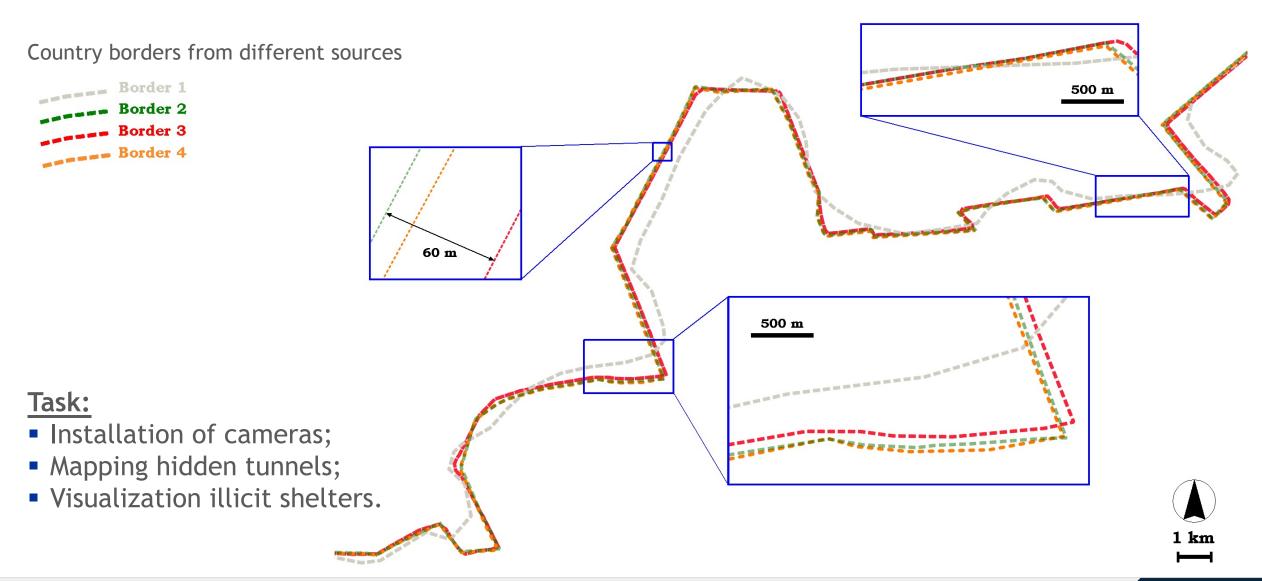

Support of Third Countries

Data required:

Administrative borders and detailed topographic content at the nominal scale 1:10,000.

EU/SAC external land borders,


Minimum 1 km, maximum 10 km border zone within the neighbouring countries.


Purpose:

Mapping additional observed/measured phenomena.

E.g.:

- Localization of incidents given by exact coordinates;
- Planning video surveillance systems;
- Mapping cross-border infrastructure.

Maps should be suitable for adding more details:

- Detecting, mapping, monitoring and analysing land objects and human activities
 - Localization of incidents given by exact coordinates;
 - Mapping ground and underground infrastructure might be used illicitly;
 - Identifying shelters, tracks, trails, changes in the landscape (e.g. soil disturbance, debris);
 - Surveying and mapping entry points of cross-border tunnels made for smuggling;
 - Tracing movements of vehicles, pedestrians;
 - Detecting, identifying, apprehending and removing individuals etc.
- Design, installation, operation and maintenance of Surveillance Systems
 - Planning fixed or mobile video surveillance systems;
 - Mapping Intelligent Signalling Systems;
 - Spatial distribution and coverage of smart camera systems, rangefinders;
 - Delineation of the network and range of different sensors etc.
- Mapping characteristic land objects
 - Transport infrastructures, linear objects and connected facilities;
 - Stations, towers, buildings, other landmarks;
 - Border control points etc.
- Trend analysis, modelling and impact assessment
 - Large scale mapping of observed phenomena;
 - Surveyed data merging with products of Imagery Intelligence at high resolution;
 - Decision support using Geospatial Intelligence.

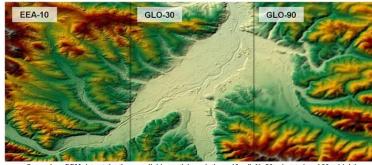
1-10 km border zone both sides of the EU/SAC external border line.

Complex methodology;

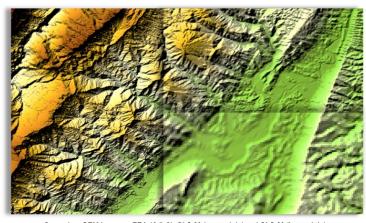
Classification can change by time, even seasonally.

Most of the thematic components are covered by the Copernicus program.

4.1 Digital Elevation Models (DEM) - various sources and spatial resolution:

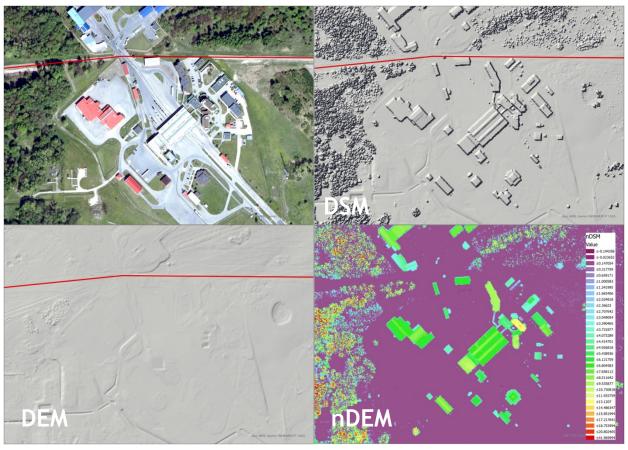

- SRTM-based products: ~ 100 m;
- EU-DEM 1.0, 1.1: 25 m;
- COP-DEM: 10 m EU, 30 m, 90 m Global.

Additional data required:


For terrain modelling, a derived product without vegetation canopy would be useful.

Specific areas / quick measurements:

- Lidar survey
- Drone-based geometrically calibrated camera: Digital Terrain Model
- 3D building models


Copernicus DEM data at the three available spatial resolutions: 10m (left), 30m (centre) and 90m (right)

Copernicus DEM Instances EEA-10 (left), GLO-30 (upper right) and GLO-90 (lower right)

Source: Copernicus

4.1 DEM, specific needs, Lidar, Drone-based DSM, 3D models: locations, capacity, conditions

Credit: Barton, G.

4.2 Hydrography of the border zone

Data required:

Detailed geometry of water courses and water bodies with describing attributes.

- Physical characteristics of the rivers and lakes;
- River shoreline character type;
- Hydro-meteorological characters (length of ice cover, length of flooding period);
- Artificial water surfaces (reservoirs, canals);
- Connected infrastructure (power plants, dikes, bridges, embankments etc.).

4.2 Hydrography of the border zone: River shoreline character type

Haapajoki, FI-RU border

Danube, CR-SR border

Danube, HU

Maritsa/Evros/Meriç, GR-TR border

4.3 Land cover

- Copernicus Land Cover data sets are available in 100 m resolution (Europe, Global).
- Seasonal changes would be interesting for border characterisation.

Croplands (pink)

Cropland with and without vegetation

Furrows in the field

Arable land on a slope

Abandoned crops

Maize field

Deep furrows in the field

Frozen, snowy surface

4.4 Settlements and population

Harmonized data sets are available:

- European Settlement Map (ESM),
 Reference year 2015. Built-up areas at a spatial resolution of 2 m.
- Global Human Settlement Layer (GHSL),
 Humanity's imprint as of 2018 at a spatial resolution of 10 m.
- GHS Population Grid (GHS-POP),
 Multitemporal (1975, 1990, 2000, 2015), 250 m, 1 km.

Additional information:

Demography, demographic transition and settlement structure of specific AOI.

4.5 Transport infrastructure

Data required:

In addition to the main road network, a detailed, structured and harmonized data sets of tracks, trails, fords, check points etc., preferable in topological data model.

Currently: ArcGIS StreetMap Premium and Open Street Map repository.

Policy view

Sources, updates, data access

Sources can be open access or commercial data provider, if the content is verified.

Good experiences with dynamically developing Volunteered Geographic Information (VGI): Reliable content and quick access.

Required frequency of updates:

We need the latest data describing always the current situation.

Data access:

Due to ICT security restrictions and the mapping and analytical demands of Frontex, the data sets are preferably available in-house after download.