
#OpenELS

Open European Location Services

ELS / OpenELS technical infrastructure, prospects prototyping 

the new ELS infrastructure

Jari Reini, EuroGeographics

Webinar, 26th September 2018



#OpenELS

Member state 
services

OpenELS Architecture (current)

A B C

WFS 2.0
(w/ paging or wo/ maxfeatures)

Open ELS
services

WMS

Security and licensing

WMS
WMTS

Testing and 
monitoring

Monitor Performance Validation

Geo
Locator

WFS
Cascading



#OpenELS

Current architecture

Benefits

• Partners host and maintain their own services

• Update cycles may be very fast

Disadvantages

• Some of the services are responding slowly

• WFS paging missing or maxfeatures limit is low



#OpenELS

Background

Open ELS project decided to test centralized architecture in 

order to tackle slow response times and limitations in feature 

delivery

The following information is based on Open ELS hackathon, 

which took place in Hønefoss, Norway, 3-5 September 2018

Participants in hackaton: Kartverket, National Land Survey of 

Finland and Eurogeographics

The architecture is a prototype, not a production service.We

used addresses (AD) as a test data



#OpenELS

UML model - AD

reduce options and unused 

constructs

keep the Inspire structure

remove most voidable and 

optional elements 

make some central elements 

mandatory 

«featureType»

AddressComponent

+ inspireId: Identifier

+ beginLifespanVersion: DateTime

«featureType»

Address

+ inspireId: Identifier

+ position: GeographicPosition

+ status: StatusValue [0..1]

+ locator: AddressLocator [1..*] {ordered}

+ beginLifespanVersion: DateTime

constraints

{AddressPosition}

{AddressCountry}

«codeList»

StatusValue

+ current

+ retired

+ proposed

+ reserved

+ alternative

«featureType»

AdminUnitName

+ name: GeographicalName

+ level: AdministrativeHierarchyLevel = 1stOrder

«featureType»

ThoroughfareName

+ name: GeographicalName

«dataType»

LocatorDesignator

+ designator: CharacterString

+ type: LocatorDesignatorTypeValue

«dataType»

AddressLocator

+ designator: LocatorDesignator [1..*] {ordered}

+ level: LocatorLevelValue

«codeList»

LocatorDesignatorTypeValue

+ addressIdentifierGeneral

+ addressNumber

+ addressNumberExtension

+ addressNumber2ndExtension

+ buildingIdentifier

+ buildingIdentifierPrefix

+ entranceDoorIdentifier

+ staircaseIdentifier

+ floorIdentifier

+ unitIdentifier

+ postalDeliveryIdentifier

+ kilometrePoint

+ cornerAddress1stIdentifier

+ cornerAddress2ndIdentifier

«codeList»

LocatorLevelValue

+ siteLevel

+ accessLevel

+ unitLevel

+ postalDeliveryPoint

«featureType»

PostalDescriptor

+ postName: GeographicalName

+ postCode: CharacterString

constraints

{PostNameEmpty}

{PostCodeEmpty}

«dataType»

GeographicPosition

+ geometry: GM_Point

+ default: Boolean

«dataType»

Identifier

+ localId: CharacterString

+ namespace: CharacterString

+ versionId: CharacterString [0..1]

«dataType»

GeographicalName

+ language: CharacterString

+ nativeness: NativenessValue

+ spelling: SpellingOfName

«dataType»

SpellingOfName

+ text: CharacterString

«codeList»

AdministrativeHierarchyLevel

+ 1stOrder

+ 2ndOrder

+ 3rdOrder

+ 4thOrder

+ 5thOrder

+ 6thOrder

+component 1..*



#OpenELS

GIStools by Arkitektum – from UML to schemas



#OpenELS

Hale Studio – ETL tool

Image: wetransform.to



#OpenELS

Hale studio – schema mapping

Image: wetransform.to





#OpenELS

Conclusions

A central architecture is a good way to serve content from 

data providers who don’t have service infrastructure

In a central architecture it is easier to configure service 

performance

A mapping from national content to common harmonized 

data model (may be)/is time consuming and requires domain 

experts as well as web service experts


