

In situ

EuroGeographics Extraordinary General Assembly May 15th, 2018

Copernicus EMS – (Rapid) Mapping component

The European Authoritative In situ Data Within the Copernicus Emergency Management Service – Rapid Mapping

SUMMARY

Copernicus EMS

- Products and Services
- Rapid Mapping

CEMS - Rapid Mapping

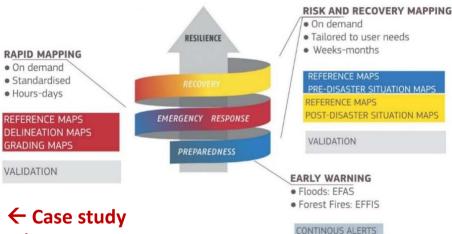
- Workflow
- In situ data requirements
- Why do we need in situ data?
- NMCA Dataset
- Case study

Challenges and opportunities

- CORDA
- ELS

Copernicus EMS

Copernicus Emergency Management Service (CEMS) provides information for emergency response in relation to different types of disasters, including meteorological hazards, geophysical hazards, deliberate and accidental manmade disasters and other humanitarian disasters as well as prevention, preparedness, response and recovery activities



Two components:

- EMS Mapping
- EMS Early Warning

The EMS Mapping Component provides two service modules:

- 1. Rapid Mapping (RM): 24/7/365 ← Case study
- 2. Risk and Recovery Mapping (RRM)

Copernicus EMS - Rapid Mapping

CEMS – **Rapid Mapping** provides On-demand and fast (within hours or days) geospatial information in support of emergency management activities immediately following an emergency event such as: natural & man-made disasters globally

283 rapid mapping activations

3.000+ maps

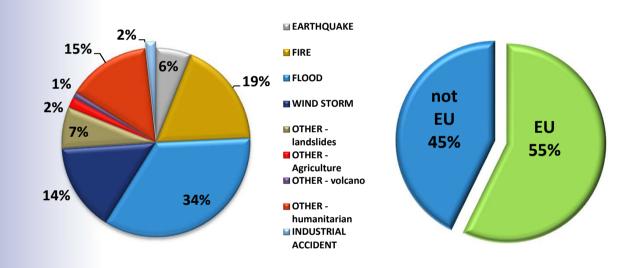
2.500.000+ kmq delivered

50+Countries worldwide

9h from activation Pre-event maps

3h from satellite data availability

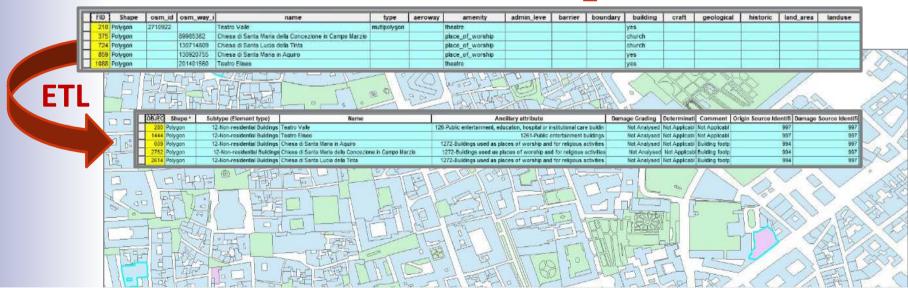
1st Post-event maps



Copernicus EMS - Rapid Mapping

DISASTER TYPE

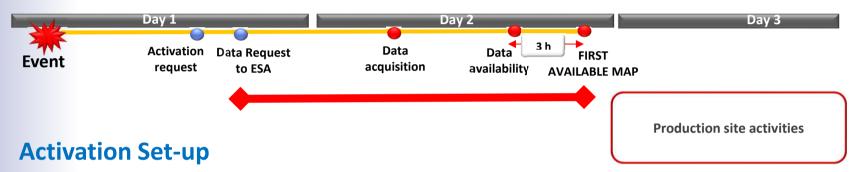
GEOGRAPHIC AREAS


Copernicus EMS RM - Workflow

OFF-LINE WORK

In situ Data collection

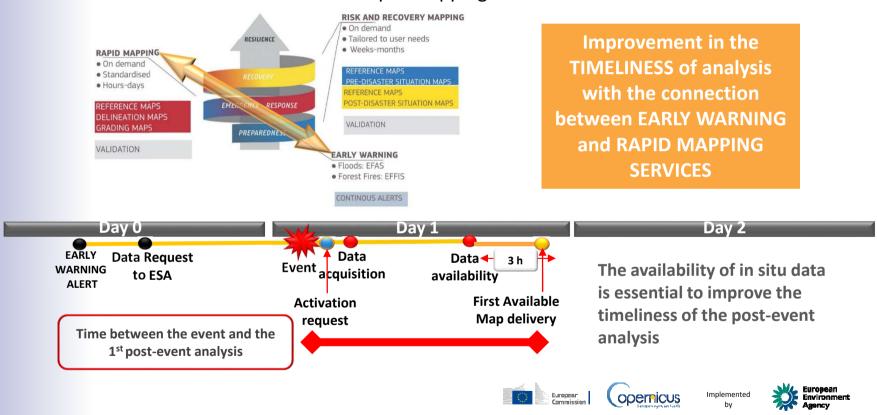
- Check of available data
- ✓ Setting of EXTRACT, TRANSFORM, LOAD (ETL) rules (Geometry, Thematic, Attributes) to harmonize the data according to the RM Data Model used during the production

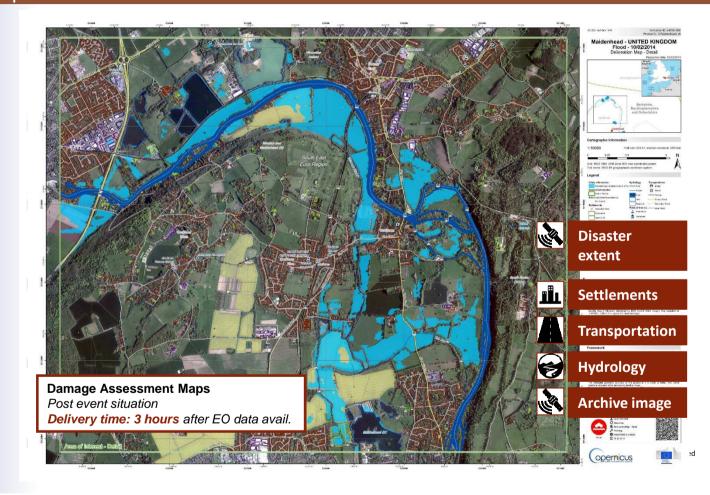


Copernicus EMS RM - Workflow

DURING AN EMERGENCY ACTIVATION

- ✓ Identification of Areas of Interest and Acquisition of satellite imagery for PRE and POST-EVENT analysis
- ✓ **Download** of in situ data in the current Data Model → ETL
- ✓ **Check** of **COMPLETENESS** and **CONSISTENCY** of downloaded reference data
- ✓ If necessary, the reference data are completed manually by the Production Specialists
- ✓ When the post-event is available, the affected areas are identified and the severity of damages are classified




Copernicus EMS RM - Workflow 2.0

Floods and **storms** are types of disasters where **EARLY WARNING** and **TIMELY ALERT** are critical for the full success of the EMS Rapid Mapping activations

Copernicus EMS RM — Workflow

Copernicus EMS RM — In situ data requirements

The main data source used for the map production are:

- ✓ Settlements
- ✓ Industry and Utilities
- √ Hydrography
- √ Transport infrastructure
- ✓ Elevation
- ✓ Land cover
- ✓ Population/Census
- ✓ Toponyms

Copernicus EMS RM — Why do we need the in situ data?

The in situ data are paramount for the Service to:

- 1. Reduce the delivery time
- 2. Increase the thematic and geometric accuracy of the products
- 3. Facilitate the integration of the data and information produced by the Service within the Users' environment

Copernicus EMS RM - NMCA DATASETS

High quality datasets produced by NMCAs

ISSUES → availability vs usability

- Special authorisation and/or human interaction required to access them
- **Data harmonization** into Rapid Mapping service component databases

Both takes up **too much time** with respect to the RM requirements, making these valuable datasets actually **unusable**

Copernicus EMS RM - NMCA DATASETS

...Yet the main CHALLENGE is

- Accessing and exploiting NMCA datasets within emergency management timeframe:
 - ✓ Granting streamlined and timely access to reference data is of essential importance for the effectiveness of these services, exploiting standard WEB Services and allowing interactive spatial search and query tools to easily identify the available data groups.

- The use of a common harmonized NMCA data model at **EU level** (*ELS-like solutions*):
 - ✓ To avoid the Copernicus service providers to build a time consuming task on ad-hoc ETL procedures on a country-by-country basis.

Copernicus EMS RM — Use of NMCA datasets — Case study

Earthquake in Central Italy

Data Sources

Pre-event image: Orthophoto 20cm © 2014 CONSORZIO TeA (formed by e-GEOS S.p.A. - CGR S.p.A. - Aerodata Italia srl) – ALL RIGHTS RESERVED

Post-event image: Pleiades-1 © CNES (2016), distributed by Airbus DS (acquired on 30/10/2016 10:00 UTC, GSD 0.5 m, approx. 0% cloud coverage, 17.7° off-nadir angle), provided under COPERNICUS by the European Union and ESA, all rights reserved.

Base vector layers: OpenStreetMap © OpenStreetMap contributors, Wikimapia.org, GeoNames 2015, Geoportale Nazionale © Ministero dell'Ambiente (http://www.pcn.minambiente.it), Italian Cadastral Map - Agenzia delle Entrate, refined by the producer.

Inset maps: JRC 2013, © EuroGeographics, Natural Earth 2012, CCM River DB © EUJRC2007, GeoNames 2013.

Population data: Landscan 2010 © UT BATTELLE, LLC

Digital Elevation Model: EU-DEM (25 m)

RASTER PACKAGE

	Unit of measurement			Highly damaged	Moderately damaged	Negligible to slight damage	Total affected	Total in AOI
Estimated population								
Settlements	Residential	No.	0	8	27	4	39	1198
	Agriculture	No.	0	0	3	0	3	133
	Cemetery	No.	0	0	0	0	0	16
	Industrial	No.	0	0	0	0	0	11
	Recreational	No.	0	0	0	0	0	41
	Religious	No.	0	2	1	0	3	8
Transportation	Bridge	No.	0	0	0	0	0	1
	Secondary roads	km	0.0	0.0	0.0	0.0	0.0	13.2
	Local roads	km	0.0	0.0	0.0	0.0	0.0	160.0
Utilities	Power substation	No.	0	0	0	0	0	1

VECTOR PACKAGE

mplemented by

Copernicus EMS RM — Use of NMCA datasets - Case Study

The intervention of *the Italian Cadastre* in the Copernicus project for the earthquake emergency in Central Italy

Settlement → Inspire theme: Buildings (BU - Annex 3)

- + Level of detail
- Very good geometric accuracy and completeness
- + The Cadastral layer easily used by the end user
- ✓ Civil protection
- ✓ Firefighters

- Availibility Time

- ✓ Some maps in the same activation were delivered before the NMCA data availability
- Thematic and attributes information
- ✓ Data Harmonization issue with the RM data model
- ✓ National language, field, domain and values interpretation issues

Copernicus EMS RM - Challenges and opportunities

CORDA Copernicus Reference Data Access

The **EEA** is working to make **NMCAs data** available via CORDA.

A **single entry point node** to the relevant national and regional geospatial **in situ** data:

- ✓ Single login solution
- ✓ Spatial search of datasets
- ✓ Complete catalogue of datasets by data provider
- ✓ Continuously updated portal and communications

- ✓ Not harmonized data model
- ✓ Some area not covered by proper services (WFS, download)
- ✓ Data download timeliness not compliant with the CEMS-RM time constraint

Copernicus EMS RM - Challenges and opportunities

Does the **ELS solution** fit **the CEMS Rapid Mapping requirements** in terms of **access** and **common data model** to the NMCA in-situ datasets?

Test Phase evaluating the following functionalities:

ELS download services access timeliness and technical constraints

- Standard Web Services (24/7/365 availability).
- Interactive spatial search and query tools.

Data model

- Information and metadata about the adopted data model.
- The completeness of the thematic information within a common and harmonized NMCA data model.

EuroGeographics Extraordinary General Assembly May 15th, 2018

Copernicus EMS – (Rapid) Mapping component

The European Authoritative In situ Data Within the Copernicus Emergency Management Service – Rapid Mapping

> Quirico D'AMICO - e-GEOS www.e-geos.it

